
PiW - Compute Pi to a million or so digits 29 JULY 1994

The program PiW can compute Pi to a million or so decimal places. It is written in Borland C++
for Windows, so it requires an IBM PC compatible computer running Microsoft Windows 3.0 or
later. It is recommended that Windows be run in the 386 enhanced mode. With 16 megabytes of
RAM it can compute Pi to 524,200 decimal places, with 32 megabytes of RAM 1,048,500
places. Run the executable file PiW.Exe and you will get the message:

 PiW - Compute Pi to a million or so decimal places in Windows
 Version 1.31, last revised: 1994-07-29, 0600 hours
 Copyright (c) 1981-1994 by author: Harry J. Smith,
 19628 Via Monte Dr., Saratoga, CA 95070. All rights reserved.

 Will write file: PiW.Out containing Pi.

 Will write file: PiW.Log containing a log of operations.

 Will write file: PiReset.Txt containing a restart file.

 Will write file: PiReset.Old containing a restart file backup.

 How many decimal places do you need? (n < 0 to restart) (0 to quit): _

Type in a number like 2000 and press Enter. The program will respond with:

 Use algorithm b? (Y/N): _

Type a single letter (y, Y, n, or N) and press Enter. The program will respond with:

 How many digits between commas in output? (0 for no , < 0 for digits only): _

Three would be the most common input here, but zero and five are also common. A negative
input causes nothing but the digits of Pi to be output. An input of -32768 is treated as minus
zero.

Type a number and press Enter. The program will start computing Pi and output a log of its
operations with diagnostic and timing data to the screen and to the file PiW.Log. If you answer

Page 1

PiW - Compute Pi to a million or so digits 29 JULY 1994

with a character other than y or Y above the program will use algorithm a instead of algorithm b.
For a request of 2000 decimal places, algorithm b, and no commas, the output looks like:

 Start of PiW.Cpp 1994-07-29 06:30:21.49
 Trying to compute Pi to about 2023 decimal places.
 T = 0 DT = 0 sec. Starting Pi
 Starting to compute Pi by algorithm b
 T = 2.31 DT = 2.31 sec. Starting Iteration
 Start of iteration number 1 of 5
 T = 19.17 DT = 16.86 sec. Starting Iteration
 Start of iteration number 2 of 5
 T = 34.94 DT = 15.77 sec. Starting Iteration
 Start of iteration number 3 of 5
 T = 52.68 DT = 17.74 sec. Starting Iteration
 Start of iteration number 4 of 5
 T = 70.64 DT = 17.96 sec. Starting Iteration
 Start of iteration number 5 of 5
 T = 89.26 DT = 18.62 sec. All done but...
 All done but inverting alpha
 T = 91.67 DT = 2.41 sec. Pi is done
 All done computing Pi

 T = 91.73 DT = 0.06 sec. Writing Pi to disk

 Pi = m.n E+0, m.n =

3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
9173637178721468440901224953430146549585371050792279689258923 E+0 (700) [2051]

 T = 93.82 DT = 2.09 sec. All done
 End of PiW.Cpp 1994-07-29 06:31:55.41

Page 2

PiW - Compute Pi to a million or so digits 29 JULY 1994

It is recommended that, if you compute Pi to more places than you can verify to be correct by an
independent source, you should compute Pi to this number of places using both algorithm a and
algorithm b and use the DOS program FC (File Compare) to verify that the same value was
computed by both algorithms.

These algorithms are documented in Scientific American, February 1988, Ramanujan and Pi, by
Jonathan M. Borwein and Peter B. Borwein.

Algorithm a:

 Let y[0] = SqRt(1/2), x[0] = 1/2

 y[n] = (1 - SqRt(1 - y[n-1]^2)) / (1 + SqRt(1 - y[n-1]^2))

 x[n] = ((1 + y[n])^2 * x[n-1]) - 2^n * y[n]

Algorithm b:

 Let y[0] = SqRt(2) - 1, x[0] = 6 - 4 * SqRt(2)

 y[n] = (1 - SqRt(SqRt(1 - y[n-1]^4))) / (1 + SqRt(SqRt(1 - y[n-1]^4)))

 x[n] = ((1 + y[n])^4 * x[n]) - 2^(2n+1) * y[n] * (1 + y[n] + y[n]^2)

For both algorithms, xn converges to 1/Pi. Algorithm a is quadratically convergent and algorithm
b is quartically convergent. The following table shows how many iterations are needed to
compute Pi to a given number of significant digits:

 Iterations Iterations Digits
 of algo. a of algo. b matching Pi
 ---------- ---------- -----------
 1 0
 2 3 (1/x2 = 3.140, algo. a)

Page 3

PiW - Compute Pi to a million or so digits 29 JULY 1994

 3 1 8
 4 19
 5 2 41
 6 84
 7 3 171
 8 345
 9 4 694
 10 1392
 11 5 2788

Algorithm b converges to a given number of digits about twice as fast as algorithm a, but takes
about twice as much work per iteration. Using PiW, algorithm b is 10 to 20 percent faster than
algorithm a.

I used PiW to compute Pi to 500,000 decimal digits. This was done on an IBM AT compatible
33 MHz 486 DX computer using Windows 3.1 with 16 megabytes of RAM and 22 mega bytes
of virtual memory. It took 37.3 hours for algorithm a and 31.0 hours for algorithm b. The results
were the same. The divide and square root routines have been improved since these runs, so the
program is a little faster now (10 to 20%).

The distribution disk for PiW includes the executable file PiW.Exe, all the source code, this
document, and the file PiW500K.Out containing Pi computed to 500,000 decimal digits. Read
the READ-ME and the WHATFOR files for a complete description of what's on the disk.

The first time I tried to compute Pi to more places than is normally needed I computed it to 50
decimal places using paper, pencil, and a hand calculator. The equation used was

 Pi = 16 * ArcTan(1/5) - 4 * ArcTan(1/239)

 ArcTan(1/x) = 1/x - 1/(3 * x^3) + 1/(5 * x^5) - ...

This was done in the early 1970's. The equation was derived in 1706 by John Machin (1685-
1751). After I got my Apple II+ computer in 1979, I computed Pi to 15,300 decimal places
using Apple Pascal and the equation

Page 4

PiW - Compute Pi to a million or so digits 29 JULY 1994

 Pi = 48 * ArcTan(1/18) + 32 * ArcTan(1/57) - 20 * ArcTan(1/239)

This is the same equation I used in 1989 to compute a 114,632 decimal place value using
Borland Turbo Pascal on an IBM AT compatible computer. The equation is due to Carl
Friedrich Gauss (1777-1855).

In 1989, Pi was computed to 1,011,196,691 decimal digits. This was done by the Chudnovsky
brothers (David and Gregory), Columbia University, using super computers.

There has been several major brakethroughs that has allowed the calculation of Pi to get into the
million digit range on a personal computer. A major limitation in Pascal is that array size is
limited to 64K bytes and arrays use 16-bit integer as their index. In Borland C and C++, arrays
are only limited by the amount of memory in your system and arrays can use long integer (0 -
2,147,483,647) as their index. This Pascal limitation forced me to convert my Multiple-precision
packages from Pascal to C++.

The equations used to compute Pi were linearly convergent. This means if we want twice the
accuracy, we need to compute twice as many terms at twice the precision. This was solved by
using algorithm a or b.

The multiply, divide, and square root routines that would be used in algorithm a and b were
running in time of the order of n squared O(n2). This meant that if it took 20 seconds to compute
pi to 1000 digits it might take 230 days to compute it to 1,000,000 places. One way to change
the order of the running time of the multiply is to use a fast Fourier transform (FFT) to perform
the convolution of the digits between the two numbers and to perform the carry out of the digits
after the convolution. This makes the running time of the multiply approximately O(n Log n).
The divide routine can be changed to an iterative method that uses the multiply. The square root
routine can be changed to an iterative method that uses the divide.

The last break through was getting an operating system that would allow you to easily use large
arrays in extended memory. This was accomplished by using MS Windows and Borland C++ for

Page 5

PiW - Compute Pi to a million or so digits 29 JULY 1994

Windows.

We now have a package on a PC that computes Pi in the 1,000,000 decimal digit range and runs
in a time of approximately O(n Log3n).

Page 6

